Key issues in batching and weighing:

Micro-proportioning

by Robert McEllhiney and Clayton Gill

Whether the feedmill is labour or equipment intensive, ingredient proportioning is one area where automation can improve quality and reduce waste. This is especially true with micro-ingredient proportioning, where consistent accuracy is required because of the high value of the raw materials.

Although they are common now in both premix and main mixing lines, automated micro-ingredient proportioning systems began as a means for the direct addition of components to batch mixers. Automated systems appeared in the USA, UK and Holland in the early 1970s.

The earliest known installation in the USA was a hydro-feed machine designed for beef feedlot mixing operations that was adapted to the batch mixing system of a commercial feedmill (McEllhiney, 1985). In 1971 the first production model of a micro-ingredient feeder was installed in an American feedmill. This unit could meter and feed 16 dry micro-ingredients and an unlimited number of liquid ingredients. Also, it could control remote feeders for the direct addition of ingredients such as salt, urea, dicalcium phosphate, iron oxide and others.

Since the 1970s, the number of commercial micro-ingredient proportioning systems available to feed compounders has increased substantially. The acceptance of these devices has increased due to the development of improved control devices—computers, microprocessors, programmable controllers, etc. Advances in weighing and volumetric feeder technology have contributed to their accuracy and durability on the production floor.

In the early 1980s, accuracy to less than 5 grams was claimed by most suppliers of micro-ingredient proportioning systems. Today, suppliers report achieving a tolerance of 0.025% of the scale capacity—1 g per 4 kg maximum load (Stork Alfra, 1989). A number of new design features contribute to this heightened accuracy:

- Variable flow slide gates (Figure 1) or screw feeders on micro-ingredient hoppers to adjust for ingredient particle size and increments of addition;
- Use of hydraulic and electric actuators over pneumatic actuators;
- Pneumatic cleanout or aspiration of hoppers, funnels and weighing platforms;
- Larger number of bins per weighing unit;
- More sensitive electronic load cells;
- More sophisticated computer control of the proportioning system.

Like their predecessors, the newer micro-ingredient proportioning systems can be used for premix manufacture or

![Figure 1. A schematic view of the action of the slide gate in Stork Alfra's MCD automated micro-proportioning system.](image)

The hydraulically actuated proportioning slide has different widths of openings. To dump, the slide moves over a stationary grate which also features different widths of openings. The computer controlling the action of the slide determines the area of the dump opening according to the pre-programmed particle size or flowability of the ingredient.

<table>
<thead>
<tr>
<th>Dilution ratio</th>
<th>Analytical results*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (g t⁻¹)</td>
</tr>
<tr>
<td>Control</td>
<td>249</td>
</tr>
<tr>
<td>1:1</td>
<td>248</td>
</tr>
<tr>
<td>1:5</td>
<td>247</td>
</tr>
<tr>
<td>1:10</td>
<td>244</td>
</tr>
<tr>
<td>1:25</td>
<td>244</td>
</tr>
<tr>
<td>1:50</td>
<td>243</td>
</tr>
</tbody>
</table>

*Expected recovery = 264 g t⁻¹.

*(treatment means did not differ significantly.

Source: Adapted from McEllhiney, 1985.
Table 2. Results of iron particle counts in the final diet at different dilution levels (20 samples per treatment).

<table>
<thead>
<tr>
<th>Dilution ratio</th>
<th>Analytical results*</th>
<th>Coefficient of variation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean(^b) (count)</td>
<td>Range (count)</td>
</tr>
<tr>
<td>Control</td>
<td>14.25</td>
<td>10-21</td>
</tr>
<tr>
<td>1:1</td>
<td>13.85</td>
<td>9-22</td>
</tr>
<tr>
<td>1:5</td>
<td>13.85</td>
<td>8-19</td>
</tr>
<tr>
<td>1:10</td>
<td>13.40</td>
<td>8-24</td>
</tr>
<tr>
<td>1:25</td>
<td>14.00</td>
<td>7-19</td>
</tr>
<tr>
<td>1:50</td>
<td>13.50</td>
<td>7-18</td>
</tr>
</tbody>
</table>

*Expected recovery = 12 counts per 50 g sample.
**Treatment means did not differ significantly.
Note: Analysis by rotary detector from Microtracers, TM Microtracers, Inc., San Francisco, California.
Source: Adapted from McElhinney, 1985.

for direct addition to compound feeds. The direct addition of micro-ingredients has a number of advantages over in-plant premixing of micro-ingredients, the use of purchased premixes or the manual weighing and addition of micro-ingredients or premixes into the batch mixer. These advantages include:
- Manufacturing cost reductions through the elimination of in-plant premixing, the storage and handling of packaged premixes, the cost of packaging supplies for premixes, and the labour of hand additions of micro-ingredients into the mixer.
- Improved vitamin stability and savings in the purchase price of vitamins and other micro-ingredients.
- A reduction of batch cycle time of 1-2 min. per batch.
- Improved accuracy of micro-ingredients and product quality enhancement, plus the same flexibility for micro-ingredient additions to formulas as with micro-ingredients.
- A reduction of the warehouse space allotted for the storage of micro-ingredients and premixes and better inventory control.
- Reduced shrink due to breakage, obsolescence, over usage and overfill of packages.
- Reduced exposure of employees to potentially hazardous additives.

However, there was some question whether direct addition of micro-ingredients would achieve the same degree of dispersion in the finished feed as the addition of a previously prepared premix. Kansas State University indicated that the dispersion of micro-ingredients in finished feeds is not sig-
nificantly affected by diluting micro-
ingredients in a premix or by the level of
dilution in a premix (McElhinney and
Tangprszechai, 1983).

In these experiments, a drug and an
iron particle tracer were added into the
batch mixer undiluted, as supplied by
the manufacturers as a control. Then,
premixes were prepared by diluting the
drug, the tracer, vitamins and trace min-
erals at one part micro-ingredient to
one part diluent (1:1). Other dilution
ratios were 1:5, 1:10, 1:25 and 1:50.
Each dilution was added to a separate
batch of 32% protein medicated sup-
plement for feedlot beef cattle. The
researchers drew 10 samples of the final
feed from each batch of supplement.
These were assayed for the test materi-
als. Then, the entire six-batch series of
tests was duplicated.

Table 1 describes the analysis of the
drug assays and Table 2 describes the
results of the tracer ingredient counts.
Statistical analyses of both the drug
and iron particle tracer results indi-
cated there was no significant differ-
ence among the dilution-level treat-
ments. This means that there is no par-
ticular quality advantage to feed manu-
facturers resulting solely from the dilu-
tion of micro-ingredients in premixes.
An approximately equal degree of dis-
plex of micro-ingredients takes place
with either direct addition or addi-
tion of a premix.

If the mixer functions properly, the
amount of diluent in a premix or sup-
plement does not alter the ultimate dis-
plex of the micro-ingredients. This
means that greater dispersion of micro-
ingredients—including drugs—in a pre-
mix or supplement does not necessar-
ily improve their dispersion in the final
feed (Swan, 1981).

As a practical matter today, however,
an increasing number of feed com-
panies view premixes—especially vitamin-
mineral mixtures—as a necessary com-
plement to the business of feed manu-
facturing. More full range feedmills are
being built with extra premix capacity
and separate premix bagging lines to
service satellite feedmills or on-farm mix-
ners. In these feedmills, conveyors—
usually pneumatic—simply channel fin-
ished premixes in bulk to the main mix-
ing line for incorporation in supple-
ments or complete feeds.

There is also more attention to con-
rol of drug use in animal feeds. Auto-
mated micro-proportioning systems
can provide detailed drug inventories
and records of use routinely or at a
moment's notice. The human role in
micro-ingredient additions shifts from

THE WEIGH TO MORE PROFITABLE LIVESTOCK

SHEKEL FEEDWEIGHT 8.5201
IS THE WAY OF WEIGHING YOUR FEED ACCURATELY

SHEKEL ELECTRONIC SCALES
Kibbutz Beit Keshet, M.P. Lower Galilee 15247, Israel,
Tel: 972-6-767646, Fax: 972-6-765775

When you weigh it all up - Shekel is the best weigh.
MEMBER OF AGROTECH CENTER Tel: (704) 872-1374
Our Distributor For U.S.A. and CANADA;
MEYHIN INTERNATIONAL Co. 35-11 9th street, Long Island City, N.Y. 11106
P.O.Box 6072, Tel: (718) 728 6909

Circle no. 107 on inquiry card

FEED INTERNATIONAL, MARCH, 1990

References
Anonymous, 1989. Product Literature. Micro-
Proportioning Installation Type MDJ, Stark Altra
BV, Bladel, Holland.
McElhinney, R.R., ed., 1985. Micro-ingredient Pro-
portioning and Mixing. Feed Manufacturing Tech-
nology III, American Feed Industry Association,
Inc., Arlington, Virginia, USA, 164-165.
The Effect of Dilution Levels in Premixes on Micro-
ingredient Dispersion in Animal Feeds. Animal
Feed Science and Technology, Elsevier Scientific
Publishing Company, Amsterdam, The Nether-
lands 3:139-146.
Swan, J.W., 1981, The Other Side of the Fence—
Cattlemen's Comments on Proposed Medicated
Feed Regulations, Feed Management, Watt Pub-